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Abstract Natural killer cells (NKs) have a great potential for cancer immunotherapy because they can rapidly
and directly kill transformed cells in the absence of antigen presensitization. Various cellular sources, including
peripheral blood mononuclear cells (PBMCs), stem cells, and NK cell lines, have been used for producing NK cells.
In particular, NK cells that expanded from allogeneic PBMCs exhibit better efficacy than those that did not.
However, considering the safety, activities, and reliability of the cell products, researchers must develop an optimal
protocol for producing NK cells from PBMCs in the manufacture setting and clinical therapeutic regimen. In this
review, the challenges on NK cell-based therapeutic approaches and clinical outcomes are discussed.
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Introduction

Natural killer (NK) cells are the direct killers of tumor cells
[1,2]. NK cells recognize target cells through two classes
of receptors: killer immunoglobulin-like receptors (KIRs)
and killer activation receptors (KARs). KIRs recognize
“self” molecules, pair with human leukocyte antigen
(HLA) class-I molecules, and transmit inhibitory signals
to maintain tolerance to NK cells. KARs pair with damage-
associated proteins to recognize “abnormal” molecules on
target cells and transmit activation signals. In tumor cells,
HLA molecules are often reduced or absent, and damage-
associated proteins are upregulated, reducing inhibitory
signals through KIRs and promoting activation through
KARs on NK cells [3]. Such recognition models between
KIRs and HLA molecules are referred to as “missing-self”
recognition, and KARs and damage-associated proteins are
involved in “stress-induced” recognition [4]. Nevertheless,
the triggering of the cytotoxicity of NK cells involves a
balance between inhibitory and activation signals [4–6].
Activated NK cells can kill tumor cells directly by
(1) secreting granules that contain perforin and granzymes
and (2) ligation through Fas ligand and tumor necrosis
factor-related apoptosis-inducing ligand. Moreover, acti-

vated NK cells can secrete several cytokines and
chemokines that can regulate innate and adaptive immune
cells to achieve indirect cytotoxic activities (Fig. 1) [7,8].
Other well-known killer cells are cytotoxic T lympho-

cytes (CTLs) and natural killer T (NKT) cells. These cells
recognize target cells through their antigen-specific T cell
receptors (TCRs) and transmit activation signals. TCRs in
CTLs or NKT cells pair with specific antigens on target
cells presented by major histocompatibility complex
(MHC) class-I molecules [9] or CD1d molecules [10,11].
These distinct recognition and activation mechanisms
between T cells and NK cells may result in diverse actions
and outcomes in cancer immunotherapy.
In this review, the contribution and challenges of NK

cell-based immunotherapy are discussed.

Approaches of NK cell-based
immunotherapy

Adoptive cell transfer (ACT)

ACT has been extensively applied in anticancer therapy in
clinical trials [12]. In NK cells, the greater the alloreactiv-
ity between donor and recipient is, the better the antitumor
efficacy is [13–16]. This relationship is consistent with the
mechanisms of NK-cell recognition, whereby autologous
NK cells are potentially inhibited by self MHC class-I
molecules on cancer cells. Based on the genotypes of KIR
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and KIR ligands from donors and recipients, five donor-
selection models have been developed and validated in
clinical trials [17,18]. However, considering the feasibility
and efficiency of selection of NK-cell donors, we should
expand and evaluate the criteria for donor selection.
Two distinct basic protocols, with or without feeder

cells, have been developed for the expansion of NK cells
ex vivo. Both protocols can be used for expanding NK cells
by over a thousandfold [19–22], remarkably improve NK-
cell expansion to a greater extent than cytokine-induced
killer (CIK) protocols, and lead to a new era of NK-cell
therapy [23,24]. However, feeder cells derived from
leukemia lines (e.g., K562) present safety consideration
and require further purification and additional measures for
quality control (Table 1). By contrast, feeder-free protocols

employ clinical-grade or US Food and Drug Administra-
tion-approved cytokines, stimuli, and antibodies with
serum-free culture medium, and they can reach approxi-
mately 70% of NK cell purity from peripheral blood
mononuclear cells (PBMCs) (Table 1). However, the
number and purity of expanded NK cells from different
donors remarkably vary, as observed in feeder-free
protocols, which still need improvement. The purity and
phenotype of the NK cells produced by different systems
also differ [25,26]. These differences can directly influence
the dose of the effector cells used for transfer and clinical
efficacy. Overall, standardized measurements for the
production and quality control of NK cells are lacking,
possibly causing substantial variations in therapeutic
outcomes.

Fig. 1 Killing mechanisms of NK cell against tumor cells. Upon the formation of immunological synapse between activated NK cell and
tumor cell, multiple killing mechanisms can be triggered, including direct killing of the tumor cell by the (A) release of granules containing
perforin and granzymes and (B) induction of apoptosis through the ligation of Fas-FasL or TRAIL-TRAIL ligand, and indirect killing
through (C) the secretion of factors that recruit and promote the activation of other inflammatory cells that indirectly kill a target cell.

Table 1 Manufacture of NK cells
Starting material Protocol features NK cell purity Expansion fold Properties References

NK92 Cytokine N/A N/A Additional irradiate step
before use

[81,103]

CB-MNC Allogeneic feeder cells 72%–95% 35–2389 – [104,105]

Stem cell Cytokines and antibodies ≥70% 1000–2100 Lack in vivo “education” [106–111]

PBMC CD3 depleted
or/and CD56 enriched

Cytokine combination 75%–99% 3–131 Additional purification
step, low expansion rate

[79,112–115]

Allogeneic feeder cells
plus cytokine or/and anti
body

≥90% 16–3637 [116–120]

PBMC Cytokines, antibodies, or/
and other stimulators

≥70% 140–5712 Simple protocols of
expansion, low purity

[19,20,121]

Feeder cells 66%–99% 20–14 116 [21,22,122,123]

CB-MNC, cord blood mononuclear cells; PBMC, peripheral blood mononuclear cell.
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Genetic modification of NK cells

Genetic modification of cells, such as chimeric antigen
receptor (CAR)-NK cells and armed-NK cells, enables the
specific targeting or augmented cytotoxicity of NK cells
[27,28]. This technique has been successfully implemented
in T cells. Approximately two-thirds of clinical trials are
targeting hematologic malignancies involving antigens,
such as CD19, CD20, CD123, CD22, and B cell
maturation antigen [29,30]. The most frequently targeted
antigen is CD19. Clinical trials with CD19-CAR-T cells
have revealed an objective response rate (ORR) of > 60%,
and other reported complete remission (CR) rates have
reached > 85% [30]. The reported side effects and
toxicities include neurologic toxicity, cytokine release
syndrome, tumor lysis syndrome, immunogenicity, and on-
target, off-tumor recognition [30]. To some extent, the
long-lasting and production of pro-inflammatory cytokines
from CAR-T cells in vivo is the cause of severe side effects
[31]. NK cells have been considered better candidates for
CARs because their short lifespans last for nearly 2 week
in vivo and they mainly produce interferon (IFN)-g
[32,33]. Moreover, CAR-NK cell activation not only
depends on CARs but also is compromised by integrated
signals from inhibitory and activating receptors. These
multiple signals on CAR-NK cells can prevent on-target,
off-tumor effects, but this system can also have unfavor-
able consequences. GD2-CAR-NK cells failed to eliminate
GD2-expressing Ewing sarcomas in a preclinical study
when a xenograft model is used mainly because GD2-CAR
cells upregulate immunosuppressive ligand HLA-G in
cancer cells. HLA-G interact with KIR on NK cells and
transduce inhibitory signals [34]. CAR-NK cells targeting
well-known targets, such as CD19, CD20, SLAMP7, and
EpCAM, have been tested in vivo with in-mouse models or
in vitro. However, only few of these targets have proceeded
to clinical trials, including CD19-CAR-NK cells and
CD33-CAR-NK cells (NCT0194479, NCT00995137),
and the results have not yet been reported [35]. Appro-
priate design of the CAR structure and transfection of the
expression vectors into NK cells are challenging steps in
the development of CAR-NK cells. These steps will be
discussed in detail in the section, “Challenges in NK cell
immunotherapy.”

Checkpoint inhibitor

Checkpoint inhibitors targeting inhibitory receptors can
augment immune-cell function, thereby effectively sup-
pressing tumor cells [36–38]. Inhibitory KIRs expressed in
NK cells play key roles in maintaining tolerance to NK
cells. The KIR-blocking antibody IPH2101 is under a
phase-II clinical trial for multiple myeloma treatment but
responded minimally in preliminary trials possibly due to

the trogocytosis of KIR2DL1/L2/L3 molecules from the
surface of NK cells by neutrophils and eosinophils induced
by IPH2101. This effect may be reversed by optimizing the
clinical scheme and combination therapy [39]. Further-
more, several blocking antibodies, such as the anti-
NKG2A blocking antibody monalizumab and the anti-
Tim-3 blocking antibody MBG453 [40–42], target
immune checkpoints on NK and T cells and can reverse
NK-cell dysfunction in preclinical studies. However, the
safety and efficacy of these inhibitors or combination
therapies require further investigation.

Cytokines and immunomodulatory drugs

Several cytokines and immunomodulatory drugs, such as
the common g-chain family of cytokines (interleukin (IL)-
2, IL-7, IL-15, and IL-21), thalidomide, and pomalido-
mide, boost NK-cell cytotoxicity [43,44]. However, the
targets of these cytokines and drugs vary [45]. Optimizing
and improving the side effects of these modulatory factors
are the key steps toward their clinical application [46,47].

Contribution of NK cells to cellular
immunotherapy

Several cell types, including antigen-sensitized dendritic
cells (DC), tumor-infiltrating lymphocytes (TIL), CIK
cells, and NK cells, have been used for ACT immunother-
apy [48–50]. Immunotherapy using NK cells is a pan-
specific ACT immunotherapy that does not rely on the
recognition of HLA-mediated tumor antigen [51]. Auto-
logous and allogeneic NK cells can be both used in ACT
immunotherapy because their safety and tolerability have
been proven [52–54]. Indeed, allogeneic NK cells exhibit
better anti-tumor efficacy than autologous NK cells
[15,16,55]. Various sources of NK cells, including
peripheral blood-derived NK (PBNK) cells, CD34+ stem
cell-derived NK cells, and NK cell lines, such as NK-92,
have been used for ACT immunotherapy [56]. PBNK cells
are the most widely used in clinical trials because they are
safe, can be collected conveniently, and can strongly kill
tumor cells. However, because of the low number of
PBNK cells in blood, they require to be expanded ex vivo.
Unlike T cells, donor NK cells last approximately 2–3
weeks in vivo [57,58]. The short lifespan of NK cells
reduces the risk of unpredictable long-term side effects.
Moreover, NK cell transfer cannot cause serious or
uncontrollable graft-versus-host disease (GVHD) or toxi-
city [12,59,60]. NK cells have been used for treating
hematopoietic malignancies (e.g., leukemia, lymphoma,
and multiple myeloma) and solid tumors (e.g., melanoma,
ovarian cancer, lung cancer, colorectal cancer, and
glioblastoma) [53,61] (Table 2).
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Hematopoietic malignancies

Infusion of NK cells for hematopoietic malignancy
treatment is used in two settings: stem-cell transplantation
(SCT) and non-SCT.
Allogenic NK cells control hematopoietic malignancies

effectively because of the graft-versus-leukemia effect. In
patients who have reached CR or morphologic CR,
adoptive NK cell transfer can remarkably prolong
disease-free progression. Of the 28 patients reported, 4
had CR lasting for about 1 year, 5 had CR lasting for about
1.5 years, and 10 had CR lasting for about 2 years [62–64].
Meanwhile, 24 out of 50 patients with active diseases
reached CR [55, 58, 65–67]. In patients with relapsed or
refractory acute myeloid leukemia (AML), the mean CR
rate was approximately 40%, which was considerably
higher than that obtained by conventional chemotherapy
(10%) [53] (Table 2). Overall, such clinical trials
demonstrated that allogeneic NK cell adoptive transfer,
as immunotherapy for hematopoietic malignancies (espe-
cially AML), is efficacious and safe without severe GVHD
or side effects.
NK cell adoptive transfer has been used extensively in

combination with SCT for hematopoietic malignancies.
SCT, combined with NK cells, improves two-year overall
survival (OS) to 36% and reduces the risk of relapse,
compared with SCT alone, which achieves a two-year OS
of 15% [68–70]. The sequence of SCT and infusion of NK
cells influence clinical outcomes. NK cell infusion
performed before or within 2 weeks after SCT has a better
clinical outcome than that performed 4 weeks after SCT
[68–74], suggesting that NK cells contribute to the control
of tumor metastasis, minimal residual disease, and tumor
stem cells. Nevertheless, the optimal clinical procedures,

including timing, frequency, and dose of NK-cell infusion,
may need more extensive studies.
Compared with NK cells, CIK cells are less effective

against hematopoietic malignancies. Patients with hema-
topoietic malignancies receiving CIK treatments, the ORR
was 30% (60/203), however the ORR was 58% with NK-
cell treatment (Table 2) [75]. The reason for the low
efficacy of CIK cells could be because > 70% of the CIK
cells are T cells (mainly naive T cell). In addition, tumor-
associated antigen-specific T cells, especially CAR-T cells,
have become the central player and recently demonstrated
exciting results against hematopoietic malignancies.
Although NK cell immunotherapy has demonstrated

substantial clinical benefit against hematopoietic malig-
nancies, the relapse rate still needs to be improved. NK cell
therapy can be potentially used for combination therapy.

Solid tumors

NK cells have innate advantages in the treatment of certain
solid tumors, such as melanoma and ovarian cancer. More
than half of melanomas in situ have reduced or absent HLA
expression, which is required in the mediation of CD8+ T
cell recognition [76] but not in NK cells recognition.
Therefore, NK cell therapy is an effective approach against
these cancers. Moreover, IFN-g is the major cytokine
secreted by NK cells and has been shown to induce the
permanent arrest of the growth of melanoma cells [77].
Ovarian cancer cells have high expression of MICA/B and
ULBPs, which can activate NK cells through the active
receptor NKG2D [51]. However, immunotherapies, which
use NK cells for melanoma, ovarian cancer, and other solid
tumors, can control disease progression but limitedly
improve or abate disease [76,78–83]. The possible reasons

Table 2 Clinical outcome of NK cell-based immunotherapy

Source of NK cells Patient characteristic Clinical outcome References

NK-92 Solid tumor (n = 31) CR = 0, PR = 4/31, SD = 5/31 [81,124,125]

Lymphoma (n = 3) CR = 1/3, PR = 1/3, SD = 0 [81,124]

Hematopoietic malignancy (n = 12) CR = 1/12, PR = 1/12, SD = 2/12 [103,124]

CD34+ cell-derived NK cells Hematopoietic malignancy, reached CR
in previous therapy (n = 18)

DFS≥12 months, 1-year OS 11/15,
2-year OS 4/15

[62,73,126]

Hematopoietic malignancy (NK cell
combination therapy) (n = 20)

CR = 9/20, PR = 9/20, SD = 0 [73,126]

Autologous PBNK Solid tumor (n = 36) CR = 0, PR = 1/36, SD = 10/36 [122,127,128]

Hematopoietic malignancy (n = 9) CR = 0, PR = 2/9, SD = 3/9 [129,130]

Allogeneic PBNK Solid tumor (n = 58) CR = 0, PR = 12/58, SD = 31/58 [78,79,128,131]

Lymphoma (n = 6) CR = 2/6, PR = 2/6, SD = 0 [55]

Hematopoietic malignancy, reached CR
in previous therapy (n = 16)

DFS≥18 months, 1-year OS 13/16,
2-year OS 12/16 [63,64]

Hematopoietic malignancy (n = 24) CR = 10/24, PR = 1/24, SD = 0 [58,64,132]

PBNK, peripheral blood mononuclear cell-derived NK cells; CR, complete remission; PR, partial remission; SD, stable disease; DFS, disease-free survival; OS,
overall survival.
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include (1) low infiltration rate of NK cells to the solid
tumor; (2) inhibitory factors, such as transforming growth
factor-b, in the tumor microenvironment; and (3) inhibition
from tumor cells, such as residual HLA expression.
Potential solutions for these crucial issues have been
proposed, including enhancing the migration of NK cells
to tumor sites, altering the tumor microenvironment
through gene modification or clearance of immunosup-
pressive cells, and combining with a checkpoint inhibitor
to activate NK cells. Recent studies have shown that IFN-g
can drive the fragility of T-regulatory cells to promote anti-
tumor immunity, suggesting that NK cells, as an important
source of IFN-g, may substantially contribute for the
immunotherapy of solid tumors [84].

Cancer stem cells (CSCs)

CSCs, which have low proliferation rate and asymmetrical
growth, are resistant to conventional tumor therapy. The
low expression of MHC class-I molecules, which mediate
the recognition of CD8+ T cells to target cells, predicts the
low cytolytic efficiency of CD8+ T cells to CSCs [85]. NK
cells, which can kill “self-missing” tumor cells, preferen-
tially target CSCs derived from colon tumors, melanomas,
glioblastomas, pancreatic tumors, and breast tumors [85].
Furthermore, NK cells also play a key role in suppressing
tumor metastasis formation with possible preferential
targeting of CSCs [86,87]. Indeed, NK-cell therapy
remarkably prolongs disease-free progression in hemato-
poietic malignancies [55,58,65–67], suggesting that NK
cells may contribute in controlling the metastasis and
recurrence of tumor cells by targeting CSCs preferentially.
However, NK cells need further investigation and more
evidence on their control of CSCs.

Combination therapy

Several studies have tested the combination of NK cells
with traditional therapy and/or immunotherapy to improve
clinical outcomes. Two strategies have been proposed.
First is the reduction of tumor burden and disruption of

tumor stroma, thereby enhancing tumor cell sensitivity.
Radiotherapy can upregulate the expression of stress-
related ligands on tumor cells, thereby increasing their
sensitivity to NK cells. Local radiation combined with NK
cell adoptive transfer can remarkably prolong the survival
of tumor-bearing mice [88]. An undergoing study have
moved forward to phase-II clinical trials for the assessment
of the effects of radiochemotherapy with NK cells on
patients with non-small-cell lung cancer [89]. Several
clinical trials combining NK cells and chemotherapy for
solid tumor treatment are underway [61,90,91]. Che-
motherapy has been shown to promote the sensitivity of
tumor cells to NK cells and deplete immune cells to make
room for infused NK cells [92,93].

Second is the enhancement of cytolytic ability or tumor-
cell targeting of NK cells. Federico et al. used anti-GD2
monoclonal antibody combined with chemotherapy and
transferred haploidentical NK cells to treat recurrent or
refractory neuroblastoma, resulting in a promising anti-
tumor activity. Out of 11 patients, four had a CR, one had
an excellent partial response, and three had a partial
response; the one-year OS was 77%, and the median time
to progression was 274 days [94]. Moreover, checkpoint
inhibitors, such as the antibodies anti-KIR [95], anti-
CD137 [96], and anti-TIGIT [97], have been exploited for
the augmentation of NK cell functions. Bi- or tri-specific
killer engagers that can enhance the targeting of NK cells
to tumor cells and augment the cytotoxicity of NK cells
have been intensively studied [98,99]. However, the
outcomes of these combination therapies are diverse, and
the role of these accelerants in combination with NK-cell
therapy remains to be validated clinically [61,78,90,91].
These phenomena are probably caused by poor persistency
and proliferation of NK cells in vivo. These conditions are
expected to be improved by ex vivo activation and
optimization of therapy regimen (e.g., dose, intensity,
and the sequential order of the different treatments).

Challenges in NK cell immunotherapy

Preclinical and early clinical trials with NK-cell immu-
notherapies exhibit safety and encouraging clinical out-
comes against hematologic malignancies. However, only a
few of early-stage clinical trials on solid tumors have not
reached any conclusion (Table 2). More studies on solid
tumors are needed for the exploration of tumor types
sensitive to NK cell immunotherapy.
Various cell types have been developed for NK cell

generation for immunotherapy, including induced plur-
ipotent stem cells, cord blood, peripheral blood NK cells,
and NK-92 line. Although each cell type exerts some
unique features, the potent cytotoxic response against
different types of tumors remains to be elucidated.
Moreover, developing off-the-shelf and strong cytotoxic
NK cells is necessary in clinical applications.
NK and T cells use distinct tumor cell recognition

mechanisms. They can be sensitive or synergistic to
different tumor types. So, the clinical outcome of
combination therapy with NK and T cells or other tumor
therapy strategies need to be confirmed with large-scale
clinical trials.
Allogenic NK cells from peripheral blood are safe and

satisfactorily effective against tumors. Meanwhile, varia-
tions across individual donors for in vitro NK cell
expansion rate and cytotoxicity are observed. Although
predicted donor selection models, considering KIR-MHC I
mismatches, has been proposed [17], and biomarkers
influencing other NK cell properties and cytotoxicity, such
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as matrices of KARs and KIRs, in both donor and recipient
remain to be further elucidated.
CAR expression enables carrier cells to recognize

antigens on tumor-cell surfaces without MHC restriction.
Transfection efficiency for primary NK cells particularly
remains the bottleneck. The transduction efficiency can
reach approximately 70% in retroviruses in T cells [29],
15%–40% in NK cell lines [100], less than 20% in primary
NK cells, and 6%–96% in ex vivo expanded NK cells
[101]. Transiently inhibiting the antiviral defense signaling
pathway leads to remarkably increased virus transduction
efficiency, but it is not practical for the large-scale
manufacture of CAR-NK cells [102]. Electroporation can
substantially increase the transfection efficiency, but
transient expression limits its CAR expression when the
cell proliferated in vivo [101]. In summary, an efficient,
reliable, and convenient transfection protocol is the
bottleneck for developing gene-modified NK cells.

Conclusions

NK cells, as the only innate immune cells in lymphocytes,
have unique advantages for tumor immunotherapy. The
challenges in both optimized clinical schemes and
techniques of NK cell generation remain to be developed.
Optimal combinations with NK cells and other therapeutic
methods, including T cell therapy could be synergistic to
tumor immunotherapy.
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